Rapid evolution of a polyphenic threshold.
نویسندگان
چکیده
Polyphenisms are thought to play an important role in the evolution of phenotypic diversity and the origin of morphological and behavioral novelties. However, the extent to which polyphenic developmental mechanisms evolve in natural populations is unknown. Here we contrast patterns of male phenotype expression in native and exotic and ancestral and descendant populations of the horn polyphenic beetle, Onthophagus taurus. Males in this species express two alternative morphologies in response to larval feeding conditions. Favorable conditions cause males to grow larger than a threshold body size and to develop a pair of horns on their heads. Males that encounter relatively poor conditions do not reach this threshold size and remain hornless. We show that exotic and native populations of O. taurus differ significantly in the body size threshold that separates alternative male phenotypes. Comparison with archival museum collections and additional samples obtained from the native range of O. taurus suggests that allometric differences between exotic and native populations do not reflect preexisting variation in the native range of this species. Instead, our data suggest that threshold divergences between exotic and native populations have evolved in less than 40 years since the introduction to a new habitat and have proceeded in opposite directions in two exotic ranges of this species. Finally, we show that the kind and magnitude of threshold divergence between native and exotic populations are similar to differences normally observed between species. Our results support the view that certain components of the developmental control mechanism that underlie polyphenic development can evolve rapidly in natural populations and may provide important avenues for phenotypic differentiation and diversification in nature. We discuss the role of developmental control mechanisms in the origin of allometric diversification and explore potential evolutionary mechanisms that could drive scaling relationship evolution in nature.
منابع مشابه
Patterns of threshold evolution in polyphenic insects under different developmental models.
Two hypotheses address the evolution of polyphenic traits in insects. Under the developmental reprogramming model, individuals exceeding a threshold follow a different developmental pathway from individuals below the threshold. This decoupling is thought to free selection to independently hone alternative morphologies, increasing phenotypic plasticity and morphological diversity. Under the alte...
متن کاملDevelopment and evolution of insect polyphenisms: novel insights through the study of sex determination mechanisms
Polyphenism is defined as a single individual’s ability to develop into two or more alternative phenotypes. Polyphenic development is taxonomically widespread among insects, cued by diverse environmental factors, and enables single genotypes to accommodate breathtaking phenotypic diversity. Most research on the developmental regulation and evolution of insect polyphenisms has focused on endocri...
متن کاملMate preference for a phenotypically plastic trait is learned, and may facilitate preference-phenotype matching.
Fixed, genetically determined, mate preferences for species whose adult phenotype varies with rearing environment may be maladaptive, as the phenotype that is most fit in the parental environment may be absent in the offspring environment. Mate preference in species with polyphenisms (environmentally dependent alternative phenotypes) should therefore either not focus on polyphenic traits, be po...
متن کاملGene expression and the evolution of insect polyphenisms.
Polyphenic differences between individuals arise not through differences at the genome level but as a result of specific cues received during development. Polyphenisms often involve entire suites of characters, as shown dramatically by the polyphenic castes found in many social insect colonies. An understanding of the genetic architecture behind polyphenisms provides a novel means of studying t...
متن کاملThe initiation of metamorphosis as an ancient polyphenic trait and its role in metazoan life-cycle evolution.
Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. que...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution & development
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2003